

A Software Design Approach for Heterogeneous Systems of
Unattended Sensors, Unmanned Vehicles and Monitoring Stations

William J. Smuda*a, Grant Gerhart a, Man-Tak Shing b, Mikhail Auguston b
aUS Army, Tank Automotive RDE Center, 6501 E. 11 Mile Rd. Warren, MI, USA, 48397-5000;

 bNaval Postgraduate School, Monterey, CA 93943

ABSTRACT

The design and implementation of software for network systems of diverse physical assets is a continuing challenge to
sensor network developers. The problems are often multiplied when adding new elements, and when reconfiguring
existing systems. For software systems, like physical systems, explicit architectural descriptions increase system level
comprehension. Coupled with well defined object oriented design practices, system extensibility is defined and software
reuse and code composition are enabled.

Our research is based on model driven design architecture. High level system models are defined in the Unified
Modeling Language (UML), the language of the software engineer. However, since most experimental work is done by
non-software specialists, (electronics Engineers, Mechanical Engineers and technicians) the model is translated into a
graphical, domain specific model. Components are presented as domain specific icons, and constraints from the UML
model are propagated into the domain model. Domain specialists manipulate the domain model, which then composes
software elements needed at each node to create an aggregate system.

Keywords: Software Design, Unattended Sensors, Unmanned Vehicles, Model Driven Design, Software Reuse, UML,
Distributed Systems, Design Patterns, Software Components, JAUS

1. INTRODUCTION

1.1. Military Robotics and Unattended Sensors

Unattended Sensor and Unmanned ground vehicle (UGV) technology can be used in a number of ways to assist in
counter-terrorism activities now. Unattended sensors have wide application in surveillance and perimeter monitoring. In
addition to the conventional uses of tele-operated robots for unexploded ordinance handling and disposal, water cannons
and other crowd control devices, robots can also be employed for a host of terrorism deterrence and detection
applications. Due to the immaturity of sensors and intelligent algorithms, we have found that as recently as 3 years ago,
users were not ready for fully autonomous vehicles [1]. The same was true of autonomous sensor networks. However, as
we move to the future, with the wider deployment of unattended sensors and robotics, as well as the emergence of new
sensors and algorithms, requests for autonomy are already being heard. We still hold to the tenant that autonomous
behavior is complexly intertwined with autonomous mission understanding, Figure 1. It does no good to send an
autonomous vehicle into the danger zone unless we are sure that an event will be detected and noted.

Human performance studies were conducted by the US Army Research Institute to explore new approaches for battle
command as may be experienced by soldiers using the Future Combat System (FCS). FCS concepts call for
unprecedented integration of automation, sensors and robotics. One of the FCS goals is to reduce the size of the
command group. The challenge is to find the optimum workload for command group soldiers. As expected, as
workload increases, at the “too-high” levels of complexity, the information and battle space managers’ performance
drops sharply [2]. Our challenge is too invent fused sensor information and mission awareness tools to reduce the
amount of information that the human in the loop needs to process and communicate to their associates.

Sensor Fusion, Mission Planning and Mission Awareness are usually associated with autonomous operation, but can also
apply to mission package data. In either case, the goal is to provide some hardware/software module to reduce the data
load on the operator and/or enable automation of robotic operation [3]. Our first goal is to remove personnel from the
danger zone. In automotive applications we can sometimes create more sensitive sensors that alert the operator to a
hazard with time for human reaction. For military and police activities, this is often technically unfeasible or cost
prohibitive; a solution is to move sensors into the danger zone on a robotic mobility platform. In either case, the key is
creating modules to interpret sensor data and alert the human operator that a hazard is near.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 MAR 2004

2. REPORT TYPE
Journal Article

3. DATES COVERED
 08-03-2004 to 08-03-2004

4. TITLE AND SUBTITLE
A Software Design Approach for Heterogeneous Systems ofUnattended
Sensors, Unmanned Vehicles and Monitoring Stations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
William Smuda; Grant Gerhart; Man-Tak Shing; Mikhail Auguston

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,1 University Way,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER
; #16019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#16019

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
SPIE Europe Defense & Security Symposium 2006

14. ABSTRACT
The news release of the Multi Services Electro-optics Signature(MuSES) code includes the ability to
customize almost every simulation aspect. User routines enable simulation of complex phenomena using
the existing thermal solver. By provding easy to use methods to customize virtually every input, fast and
accurate solutions are calculated. This customization is further advanced with the addition of hook
functions and the Application Programming Interface(API). Hook functions allow the user to have solver
level interactions without adding complexity, while the API allows the user to retrieve and override values
within the solver. Together, user routines, hook functions, and the API give the user the capability to model
advanced heating algorthms, complex control and logic systems, and proprietary survivability techniques
without considerable learning curve.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Figure 1 The Effective Area – Overlap Between Signature Horizon and Detection Horizon.

Integrating these modules is a software intensive task in most cases. To be responsive to user need, we must have tools
and architectures in place to rapidly integrate sensors, mission planning and mission awareness modules as they mature.

1.2. Design Assumptions

We begin with design assumptions based on experiences gained over the last several years.

The first assumption is that we have a collection of artifacts that we are interested in integrating. These artifacts may
include Operator Control Units, Platforms (robots or unattended sensors), mission sensors, proprioceptive sensors control
algorithms or mission packages (arms, masts etc.) just to name a few. In most cases, these disparate artifacts do not
conform to messaging standards. In most cases, we do not have access to the embedded processors to include additional
code. In most cases, we do not have access to the code, or access to proprietary compilers needed to modify the code. In
essence, we want to integrate a collection of black boxes. We have some knowledge of the physical I/O, but the software
data structures needed to communicate must often be ferreted out from code or by inspection of the run-time
communications. In the worst case, all integration software will run on auxiliary processors.

Needless to say, creating interfaces to these artifacts can be an expensive and time consuming effort; effort we would
like to retain and reuse. We would also like to make this information and knowledge usable by non-software experts.

The second assumption is that in most government labs, software engineers are a scarce commodity. That is not to say
we don’t have software “guys”. We have them and many are talented individuals, however, they are often not trained in
the intricacies of modern software design and development paradigms.

In summary, the worst and often typical case is that we need to integrate a collection of artifacts that we can only access
via external interfaces. The engineers and scientists are usually robotic or unmanned sensor specialists with a smattering
of software knowledge. Experienced software engineers and experienced robotic and unattended sensor engineers with
intensive software engineering experience are in short supply.

Our task then is to develop guidelines, methods and tools to:

− Capture Software Engineering Expertise.

− Transfer this knowledge to Domain Engineers.

− Capture software elements for reuse.

− Capture configuration and execution data.

− Provide tools to simplify the integration process.

2. DESIGN ELEMENTS

2.1. Top Level Design

Basic Tools, fixtures, templates and guidelines

Communications Optional Aspects Artifact Wrappers

Meta Models

Domain Specific Modeling Tool

Composition / Generation

Node Code Node CodeNode Code

Code Base
Journeyman

Robotics Engineer

User Evaluator

Technician

Software

Figure 2 Top Level Design

Referring to Figure 2, we find a PowerPoint representation of the proposed system. As you can see, it is a simple block
diagram of high level abstractions. The placement of the abstractions indicates a progression from flexible sub
architecture, the realm of the software engineer, to a generic sub-architecture the realm of the robotic and/or unattended
sensor engineer, to a product, the realm of the user; a technical evaluator of a robotic system in this case.

2.1.1. Code Base
Staring on the left, there is a block labeled “Code Base”. This block represents a storage abstraction. It can be as formal
as the Database, or it can be a simple set of files in a folder. As the project matures, we expect the former, but there may
be some new storage paradigm that may be implemented in the future.

2.1.2. Use Cases
On the right, there are simple arrows, showing the range of human actors in the system. There are no exact limitations,
but we notice a progression of responsibility from the software engineer at the bottom to the technician at the top.

2.1.3. Foundation
The center bottom block is labeled Basic Tools, fixtures and guidelines. These may include editors, XML parsers,
design patterns and text files describing requirements and standards. This abstraction represents a foundation for what is
to come.

2.1.4. Components
The next set of blocks up represents reusable components. These components are stored in the code base when
completed. The final codes are composed from this set of components. The components are constructed using design
patterns described in the bottom block. Different types of components will use different design patterns. The design
patterns are necessary to insure that the interfaces are of the proper type at composition time. Notice that there is a
dashed line above the component blocks. This line indicates that this part of the architecture is not only in the realm of
the software engineer, but also indicates a temporal abstraction. The guidelines and components are a necessary
prerequisite to the blocks above. This relationship is not a hard one. In order for the meta model to work, it needs to
know at least, what components will be available to the final composition. Additional components may be added as time
goes on, but new meta models will need to be assembled to take advantage of them.

2.1.5. Meta Model
The third block up is titled Meta Models. This is the spine of the architecture. Meta models are created by software
engineers with knowledge of the domain or software engineers collaborating with domain experts. They are the key to
this architecture. The meta model encapsulates high level information about the system. The meta model defines

component relation ships and constraints. It is a vehicle to encapsulate software engineering knowledge and facilitate
transfer of this knowledge to domain experts.

Above the meta model is another dashed line; another separation of responsibility and another temporal relationship.
Blocks above the meta model cannot be realized until the meta model is complete.

2.1.6. Domain Model
The fourth block up in the architecture is the Domain specific modeling tool. This tool is generated from the meta
model. It is a workspace from which concrete models of the system under construction may be instantiated.

There may be several or many domain models created from a single meta model. The domain model is often constructed
with icons specific to the domain being examined. This enables domain engineers to create system models for a variety
of scenarios. For instance, the meta model may include a communications element. The domain modeler may choose
from a variety of concrete communications components like serial, TCP/IP or CAN communication components. The
domain modeler is also able to select the individual end nodes that will participate in the system.

2.1.7. Putting it all Together
Moving up to the fifth level, Composition / Generation allows the domain expert to create the software elements
necessary, again without having to know the software engineering details necessary to accomplish this task. Again, the
goal is to separate concerns. This architecture allows the experts to do what they know. Software engineers do not need
to learn intricate details of the realization of the system; domain engineers do not need to know the details of the
software engineering needed to provide them with this tool. “Architects” create models of buildings, structural engineers
flesh out the design depending on location, customer and environmental factors. Tradesmen build the building.

Above the fifth block is yet another dashed line; another separation of responsibility and another temporal break point.
Transitioning across this line is not possible until all the blocks below have been realized. It also is the transition from
design to a reification of the system. Above the line is the artifact of interest, something that can be used for
experimentation or as a production item.

2.1.8. Nodes
The top set of blocks is the node code. Once the codes are generated, they can be move to the individual nodes. The
aggregate is the system artifact. In a prototyping environment, the artifact can be run through its paces in a variety of
mission scenarios. The final artifact may be a simulation, a hardware-in-the-loop simulation or a pre-production
hardware prototype. At the very top, there are blocks labeled simply node code. These blocks are an abstraction of a
final product. In the case of a robotic prototyping system, each node has a run time architecture associated with it,
generated from the domain model, which is an instance of the meta model (Figure 3). The run time system accepts XML
messages, operates on the messages to modify behavior (such as throttling throughput) or to log events. It also parses the
XML and converts to a format acceptable to the artifact of interest.

C
om

m
un

ic
at

io
ns

In
st

ru
m

en
ta

tio
n

B
an

dw
id

th

Se
cu

rit
y

Le
ga

cy
 F

or
m

at

In
pu

t P
ar

se
r

Log / Action

 Tr
an

sl
at

or
 C

od
e

OPTIONAL

Figure 3 Prototyping System Node Run-Time Architecture

2.2. Model Driven Engineering

This design is based on Model Driven Engineering, a relatively new software development paradigm. Product line
development for distributed embedded systems, such as aerospace and automotive, has become extremely complex.
Developers spend years mastering platform APIs ands usage, even still, they often only come to a complete
understanding of a subset of the platforms they develop for regularly. Model driven engineering focuses on abstractions
particular to the application problem space and expresses designs in terms of concepts from that space. [5]

Model Driven Engineering combines software components constructed to conform to specific design patterns with
Domain Specific Languages. These languages are described in a meta model, often graphical, that defines the relation
ships of abstractions in the domain. The meta models are created in UML, the language of the software engineer. They
are transformed into a constrained design environment, usually using graphical icons that pictorially describe the
abstractions in terms easily understandable by domain engineers.

The domain engineers then create concrete instances of the meta model using icons that represent components available
for composition of the final product. From the completed design, program generators are able to assemble components
and create glue code to allow them to work together.

2.3. Standards & Tools

In many research applications, particularly in the early phases, standards often take a back seat. Engineers are
encouraged to think outside the box or standards do not yet exist. However for this effort, several standards are of the up
most importance.

XML standards are important at several levels. XML representations of models facilitate transitions between different
phases of development and allow the use of automated tools.

The Joint Architecture for Unmanned Systems (JAUS) [4], transitioning to an SAE standard, provides a common
messaging framework.

2.4. Components

Components are the key to software reuse. A collection of components is created by software engineers. These
components later become a selection of model elements selectable by domain engineers.

Clemens Szyperski of Microsoft Corporation writes: “All components exist in a flat universe. This is an important
property, as it allows servicing of components without having to know all places where that component has been used”
[6]. This indicates that components should support a consistent interface and contract.

Both Szyperski, in Component Software [7] and Czarnecki and Eisenecker, in Generative Programming: Beyond Object
Oriented Programming [8] agree that a component:

− Is a unit of independent deployment.

− Has no externally observable state.

However, Szyperski contends that a component is a unit of third party composition, while Czarnecki and Eisenecker
relax the requirement of “third party composition”. We agree with Czarnecki and Eisenecker as long as the first two
requirements hold. Components may be created internally or externally. Components are simple building blocks
combinable in as many ways as possible.

For the purposes of this design, there are three general classes of components:

1. The endpoints, the individual hardware artifacts or simulation artifacts, along with wrappers, software, that at a
minimum provides a mechanism to allow artifacts to be connected are components for our purposes.

2. An arbitrary number of optional components to instrument the prototype, induce disturbances, simulate
communications protocols, throttle communications speed and/or provide translations to name a few.

3. Communications components that connect the nodes to the system. These may be very simple components
such as TCP/IP or serial connection code. Or they may be very complex communication components such as

self organizing mesh networks, TCP/IP networks with additional discovery algorithms or entirely new
communications components.

Each of the classes should conform to a common interface to allow automatic construction of the resulting run time code.

2.5. Design Patterns

Design patterns are high level abstractions of common design problems. They help us describe components, or
collections of components. By using design patterns, we can develop designs that are extendable and mutable. If we
create designs that specify a particular design pattern, we can take advantage of polymorphism and create new behaviors
within this pattern at a later date and reuse the high level design. This means we can add new artifacts, optional
components or communication components as needed.

To use design patterns effectively, we take advantage of common abstract interfaces. The glue code generators defined
at the design level bring together a collection of interfaces. The details of the actual implementation below the interface
are unimportant to the glue code generator. As an analogy, think of a soda bottling plant. The design for the plant
includes a capping machine. The capping machine is concerned with the interface; the bottle top and the cap. It is not
concerned with the flavor of the beverage inside the bottle. If the plant design is modified to change from a crimped cap
to a screw cap, all the designers need to be concerned with is the interface, they do not need to be concerned with the
flavor of the beverage that is being contained.

Design patterns might also be compared to composite digital devices. When creating an electronic design, we refer to
reference material of discrete components. These components have a well defined interface. We may be concerned with
some of the characteristics of these components dictated by their internal makeup, such as power consumption or
latency, but we are not usually concerned about the intricate details. What we are concerned about is the interface. In
order to compose a circuit, we need to know the pin outs and function of the device. We find this in a reference volume
or specification sheet from the manufacture. In many cases, there may be more than one manufacture; the internals of
the chip may be different, but the interface is common. This allows us to use tools that can layout the traces on a circuit
board.

Design patterns are becoming a similar abstraction for software. A particular design pattern specifies an interface and
function that the high level designer is interested in. Component developers do not need to know in what context the
design pattern is being used; they need to know the function and interface they are creating.

Reference material is becoming available for software design patterns, just as there are reference volumes for electronics.
There are several excellent books available for understanding design patterns:

“Design Patterns, Elements of Reusable Object-Oriented Software” [9] provides a catalog of common general
purpose patterns. “Head First Design Patterns” [10] is very readable introduction to the most common design
patterns. It provides detailed examples with UML descriptions and Java code. “Pattern-Oriented Software
Architecture, Vol 2, Patterns for Concurrent and Networked Objects” [11] provides patterns to solve the often
difficult problems associated with communications in distributed systems.

Three main design patterns will be used in this work:

Adaptor. The adaptor patterns will be used to wrap the legacy and research artifacts that represent the physical and
control nodes of the robotic system. The input and outputs of the adaptor pattern will be XML representations of
JAUS messages. The JAUS messages will be converted to the software and physical formats necessary to the
artifact. As an example, the ODIS-T2 robot accepts proprietary data packets via a serial port. The wrapper will
convert to and from JAUS message format to ODIS-T2 format; it will also transport the proprietary data packets via
a serial link.

Visitor. The visitor patterns will be responsible for passing the JAUS message to any instrumentation, modification
or other optional component specified in the design. Visitors will insure that each incoming and outgoing message is
seen and/or operated on by the optional components.

Proxy. The communications components will be accessed via a proxy pattern. The communications components
are expected to vary widely, from simple serial to very complex mesh networks with discovery. Using a proxy
pattern insures that the system will be easily extensible. As the communications environment varies, only the proxy

design pattern will need to be modified. To the rest of the node, communications will be simply, a message has been
received, or a message is being sent.

Additional design patterns may be used in conjunction with the main design patterns within components. This will
simplify modifying and expanding components as the system matures.

2.6. Meta Model

The meta modeling environment for this project is the Generic Modeling Environment (GME) [12], an open source,
visual, configurable environment for creating Domain Specific Modeling languages. GME use starts with configuration
of the modeling environment; modeling of the modeling process or creating a meta model. The modeling language is
UML class diagrams. Figure 4 shows a simple meta model for a robot system, the work under discussion.

Figure 4 Simplified Meta Model of a Robotic System.

The meta model is a source document. That is, unlike previous CASE models of the 90’s, it is not left behind to get out
of sync with the implementation. The meta model defines a paradigm, a set of rules that will configure the GME for a
specific operation.

In the case of Figure 4, the top level object is a model labeled “Robot”. Contained in the Robot meta model are messages
and artifacts. Artifacts are abstract; they do not have any implementation. The artifacts are defined by inherited types,
bottom level objects or atoms. There are five different types of atoms possible to represent artifacts. A robot model can
contain 1 or more artifacts. Finally connections between the artifacts are defined as “messages”. Artifacts can send or
receive 0 or more different messages.

If we wanted to configure, the final artifacts (and we do) they would be redefined from atoms to another type that allows
containment. There may be multiple objects contained in each artifact, these in turn would be defined as atoms. Some
of the Lower level objects we are interested in are wrappers for legacy or other non-conforming physical objects,
instrumentation and communications components.

2.7. Domain Specific Model Language

The Domain Specific Modeling Language (DSML) is generated from a corresponding meta model. Note that due to
configuration of the meta model, the artifacts are now represented by domain specific icons that represent their
functionality in terms of the domain of interest; in this case, robots.

The new modeling environment is handed off to a domain engineer. The domain engineer selects from a palate of
approved abstract artifacts, (controls, sensors, platforms, Operator Control Units (OCUs) and manipulators) and creates a
model by connecting them in a meaningful way (Figure 5). The underlying components that will be uses are aspects of
the artifacts dragged onto the work space.

Figure 5 Domain Specific Modeling Workspace

There may be any number of models created by the domain engineers. The number of models is limited only by the
cardinalities imposed in the meta model and the number of component instances available for each artifact. This
particular model is of three robots, a leader and two followers. Each has a GPS positioning sensor and the two followers
have distance sensors. The waypoint driver control computes waypoints for the two followers based on the input from
the five sensors. The waypoint driver passes new messages to the primitive driver to control the two follower robots.
The way point driver receives messages from the OCU to control the leader. The way point driver may be influenced by
the messages from the OCU to vary distance for instance.

The meta model to model translation facilitates transfer of specific software engineering knowledge to non-software
domain engineers. The domain engineers use the domain specific model to compose models of instances of a “robotic
system product line.” This allows project leaders to control development and manage differences while leveraging
common characteristics of the application domain. [13].

2.8. Code Composition / Generation
The ultimate goal of this research is to free the domain engineer from the arduous task of creating code for prototype
robotic systems. All code needed should be created by software expert and stored in a repository. The domain engineer
selects the icons that represent collections of code. The domain engineer selects a particular code by completing an
annotation in the domain model.

The domain model completed by the domain engineer is represented by an XML file. This file contains all the
information needed to recreate the domain model. It also contains all the information needed to compose components
and create glue code for the robotic system.

Table 1 is a fragment of code from the domain model represented in Figure 5 above. Remember, this is a simplified
model created for illustration purposes only, there are no attributes associated with the atoms (icons) or connections
(lines). It also does not have lower level components associated with it that would be necessary to completely configure
the artifacts for use in a prototyping system.

Even so, complete robotic system code could be created from the XML file represented in Table 1. One atom is shown,
the primitive driver control. Both the primitive driver and the waypoint driver are simply controls in the meta model. In
this domain model, they are differentiated by the XML <name> element. They are also assigned “IDs” by the GME
environment. The IDs are used later by the XML <connection>/<conpoint> element to specify the source or destination
points of the connection.

Adding additional attributes to the meta model will allow additional tuning of the generated/composed coded.
Enumerated attributes can constrain the domain engineer to a selection that may be a subset of all the components of this
type i.e. a particular set of sensors.

To generate the code, the XML tree is parsed and, in this case, large components (containing predefined wrappers,
instrumentation and communications) are assembled for each of the artifacts. The components can be configured by
using the parsed XML tree as input to a compositional script written in PERL or RUBY. Another possibility is to
transfer the XML to a generative environment, such as an ECLIPSE project. [14].

…
<atom id="id-0066-0000000c" kind="Control" role="Control" relid="0x15">
 <name>Primative Driver</name>
 <regnode name="PartRegs" status="undefined">
 <value></value>
 <regnode name="Aspect" status="undefined">
 <value></value>
 <regnode name="Position" isopaque="yes">
 <value>765,72</value>
 </regnode>
 </regnode>
 </regnode>
</atom>
<connection id="id-0068-00000001" kind="Message" role="Message" relid="0x5">
 <name>Message</name>
 <connpoint role="src" target="id-0066-00000001"/>
 <connpoint role="dst" target="id-0066-00000004"/>
</connection>
<connection id="id-0068-00000005" kind="Message" role="Message" relid="0x13">
 <name>Message</name>
 <connpoint role="src" target="id-0066-00000001"/>
 <connpoint role="dst" target="id-0066-00000005"/>
</connection>
<connection id="id-0068-00000008" kind="Message" role="Message" relid="0x16">
 <name>Message</name>
 <connpoint role="src" target="id-0066-0000000a"/>
 <connpoint role="dst" target="id-0066-0000000c"/>
</connection>
…

Table 1 Fragment of XML Code Generated by Domain Model Instance

3. RELATED WORK
There is considerable research being conducted in Model Driven Design and Model Driven Architecture. The Object
Management Group’s (OMG) UML2.0 provides increased support. The Generic Modeling Environment from the ISIS
center at Vanderbilt University provides a platform for developing Model Driven designs. The embedded systems
community has recognized the power of model driven design for developing software product lines for automotive,
signal and aerospace applications. The Eclipse Foundation has several projects focusing on Model Driven paradigms.

3.1. UML2.0

The goal of Model Driven Design is to alleviate difficulties created by the low level of abstraction used in creating
today’s software systems. The OMG Architecture Group has responded to by embracing a vision to expand UML and
provide support for all phases of the software lifecycle [15]. UML2.0 is an outcome of this vision.

UML2.0 supports modeling from different viewpoints. Structural, interaction, activity and state viewpoints have some
interdependencies, but allow modelers to concentrate on specific concerns.

UML is still in the development phase as a standard. It is a large and complex, making it difficult to grasp in whole.
Experience “from the field” is required to refine and mature the standard.

3.2. Chrysler AG

Czarnecki, Bednasch, Unger and Eisenecker report on their experience at Chrysler AG for automotive and satellite
applications [16]. They describe their experience with Model Driven Design and Feature Modeling tool support with the
GME tool.

Domain specific concepts and features from the problem space are mapped to a set of combinable elementary
components in the solution space using configuration knowledge such as, combination restrictions, default settings and
dependencies and construction rules. They use a feature model to define the common and variable features of the
products along with supplemental information (binding, priorities etc) unique to the product being developed.

The feature model has a root or concept node and child nodes. The child nodes or sets of child nodes are mandatory,
optional, alternative or “or” features. The nodes are combined in various ways to produce an instance of a concept. I.e.
A car (concept) can have a manual, automatic or CV transmission, but only one transmission. A car may also have a
fossil fuel motor, and electric motor or both.

In the referenced work, they present a UML meta model for feature modeling notation using GME. They also show a
derived domain specific model, also using GME.

3.3. Embedded System Control Language

Additional work at Vanderbilt University uses the GME tool, along with Mathworks Simulink and Stateflow tools to
create the Embedded Control Systems Language (ESQL) to support development of distributed embedded automotive
application [17]. ESQL imports the Simulink/Stateflow models into the GME environment. ESQL is a graphical
modeling language for with a suite of sublanguages. Sublanguages are provided to support functional modeling,
component modeling, hardware topology modeling and deployment mapping.

The ECSL also has a code generation component. The generated artifacts can synthesize the entire application behavior
code, or external application behavior code can be linked in.

4. FUTURE WORK
The next step is implementation of the design environment for prototyping a series of robotic systems. Beginning with
simple models, robot simulations and very coarse grained components, the simple models presented earlier will be
realized. Continuing, the meta models will be refined to include lower level component composition. A set of robotic
artifacts (platforms, controls, OCU’s etc.) will have their interfaces wrapped to conform to the JAUS standard. A
collection of instrumentation components will be created, as well as several different communications components;
TCP/IP and serial to begin with.

As we grow more confident with the meta models and domain specific models, additional artifacts such as mission
packages and manipulators will be included both in simulation and physically.

5. CONCLUSIONS

Model Driven Design has great potential to extend the software engineers knowledge to domain engineers. It provides a
vehicle for software reuse through the focus on predefined software components.

It simplifies the job of the engineer creating the prototype system by allowing him to focus on the task at hand. It also
reduces the time and cost required to evaluate a new application or mission

Since the meta model is the root of all the design efforts and all subsequent activities are captured there is tractability to
the initial meta design level.

Finally, prototyping with model driven design provides path forward for implementation of final system.

REFERENCES

[1] W. Smuda, P. Muench, G. Gerhart, K. Moore, “Autonomy and Manual Operation in a Small Robotic System for
Under-Vehicle Inspections at Security Checkpoints”, SPIE Defense & Security Symposium, Orlando, FL, April 2002.

[2] C.LickTeig, W. Sanders, P. Durlach, J. Lussier, “Measuring Human Performance in Battle Command”, Army AL&T,
May-June 2005, pp16-20.

[3] W. Smuda, L. Freiburger, H. Andrusz, J. Overholt, G. Gerhart, D. Gorsich, “Rapid Infusion Of Army Robotics
Technology For Force Protection & Homeland Defence” , Army Science Conference, Orlando, FL, Dec 2002.

[4] “Joint Architecture for Unmanned Systems.” www.jauswg.org

[5] D. Schmidt, “Model Driven Engineering”, IEEE Computer, February 2006, pp 25-31.

[6] C. Szyperski, "Component Technology - What, Where, and How?," icse, p. 684, 25th International Conference on
Software Engineering (ICSE'03), 2003.

[7] C Szyperski, Component Software: Beyond Object Oriented Programming, Boston, MA, Addison-Wesley, 2002.

[8] K. Czarnecki, U. Eisenecker, “Generative Programming: Methods, Tools, and Applications”, Boston, MA, Addison-
Wesley, 2000.

[9] E. Gamma, R. Helm, R. Johnson, J.Vlissides, “Design Patterns”, Boston, MA, Addison-Wesley, 1995.

[10] E. Freeman, E. Freeman, “Head First Design Patterns”, Sebastopol, CA, O’Reilly, 2004.

[11] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, “ Pattern-Oriented Software Architecture” Vol 2, “Patterns for
Concurrent and Networked Objects”, West Sussex, England, 2000.

[12] Generic Modeling Environment, http://www.isis.vanderbilt.edu/projects/gme

[13] K. Czarnecki, M. Antkiewicz, C. Hwan, P. Kim, S. Lau, K. Pietroszek, “ Model-Driven Software Product Lines”,
OOPSLA ’05, San Diego, CA, October 2005.

[14] Eclipse, http://www.eclipse.org/

[15] Model Driven Architecture (MDA), Document number ormsc/2001-07-01 Architecture Board ORMSC1

July 9, 2001, http://www.omg.org/mda

[16] K. Czarnecki, T. Bednasch, P. Unger, U. Eisenecker, “Generative Programming for Embedded Software: An
Industrial Experience Report”, Proceedings ACM SIGPLAN/SIGSOFT Conference, GPCE, Pittsburgh, PA, October
2002.

	1. INTRODUCTION
	1.1. Military Robotics and Unattended Sensors

	1. INTRODUCTION
	1.2. Design Assumptions

	2. DESIGN ELEMENTS
	2.1. Top Level Design
	2.1.1. Code Base
	2.1.2. Use Cases
	2.1.3. Foundation
	2.1.4. Components
	2.1.5. Meta Model
	2.1.6. Domain Model
	2.1.7. Putting it all Together
	2.1.8. Nodes

	2.2. Model Driven Engineering
	2.3. Standards & Tools
	2.4. Components
	2.5. Design Patterns
	2.6. Meta Model
	2.7. Domain Specific Model Language
	2.8. Code Composition / Generation

	3. RELATED WORK
	3.1. UML2.0
	3.2. Chrysler AG
	3.3. Embedded System Control Language

	4. FUTURE WORK
	5. CONCLUSIONS

